If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12-x^2+21=0
We add all the numbers together, and all the variables
-1x^2+33=0
a = -1; b = 0; c = +33;
Δ = b2-4ac
Δ = 02-4·(-1)·33
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*-1}=\frac{0-2\sqrt{33}}{-2} =-\frac{2\sqrt{33}}{-2} =-\frac{\sqrt{33}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*-1}=\frac{0+2\sqrt{33}}{-2} =\frac{2\sqrt{33}}{-2} =\frac{\sqrt{33}}{-1} $
| 12x^2+3x-2=0 | | x²-x-1246=0 | | 3(4x+3)+2x=5(2x-1) | | 3(4x+1)=-30 | | x/2-3=-5/6+1-x/3 | | 12-x^2+2=0 | | 1/3x=7/6-1/4x | | -1/2x+3=2x-5 | | z2z+6=0 | | 4x+5=7x+17 | | 11=(x*7)+(1-x)*22 | | 8x-3(2x+1)=6 | | 22=(x*7)+(1-x)*11 | | 22=(1-x)*11 | | 36=9x* | | 7.1x5.6=39.76 | | 10+3a=25 | | 11x+6x=29-4 | | 10+3a=255 | | 10+3w=255 | | -6x+7-6(x-1)=6x-(5x-5)+6 | | 0.2e2=20 | | -0.153=1.7x | | -4(k+2)-k-5=5(k+4)+7 | | -6x+8x-6=2(x-2)-4 | | 5/n=25/40 | | (5-2x)(2x-5)=0 | | 11k+6=-4k^2 | | (x-6)(3+x)=0 | | _(-2n+1.3n)+3.4+(2.5+0.3×2)=(6n-3n)÷5n+10-5×3+2.5×2 | | -x^2-4x+72=-5x | | 0=(√5+√13i)(√5-√13i) |